A Triumph Against Deadly Strains of Coronavirus


Saunders and colleagues built the tri-valent vaccine using a nanoparticle loaded with a key fragment called a receptor binding domain from each of the coronaviruses. The fragment – a docking site on the virus that enables it to infiltrate the body’s cells – provides enough information for immune cells to build an effective response against actual coronaviruses that enter the body.

In earlier studies in mice and primates, the researchers demonstrated that an earlier iteration of the nanoparticle vaccine was effective against multiple SARS-CoV-2 variants. Human tests are planned next year for a version that carries immunogens to different SARS-CoV-2 strains, including those that have dominated since the original outbreak in late 2019.

Advertisement


The current work expands the components of the vaccine to include an additional SARS-related virus and MERS virus. In lab studies, as well as in mice, the researchers found that the vaccine candidate generated inhibitory immune molecules called antibodies against all three pathogenic human coronavirus types.

Importantly, vaccinated mice did not grow sick when challenged with either SARS-like or MERS-like viruses.

“This study demonstrates proof-of-concept that a single vaccine that protects against both MERS and SARS viruses is an achievable goal,” Saunders said. “Given that one MERS and two SARS viruses have infected humans in the last two decades, the development of universal coronavirus vaccines is a global health priority.”


Source: Eurekalert



Source link