Global Warming Accelerates CO2 Emissions from Soil Microbes


“Thus, the projected rise in microbial CO2 emissions will further contribute to the aggravation of

, emphasizing the urgent need to get more accurate estimates of the heterotrophic respiration rates,” says Alon Nissan, the main author of the study and an ETH Postdoctoral Fellow at the ETH Zurich Institute of Environmental Engineering.

These findings do not only confirm earlier studies but also provide more precise insights into the mechanisms and magnitude of heterotrophic soil respiration across different climatic zones. In contrast to other models that rely on numerous parameters, the novel mathematical model, developed by Alon Nissan, simplifies the estimation process by utilizing only two crucial environmental factors: soil moisture and soil temperature.

The model represents a significant advancement as it encompasses all biophysically relevant levels, ranging from the micro-​scales of soil structure and soil water distribution to plant communities like forests, entire ecosystems, climatic zones, and even the global scale. Peter Molnar, a professor at the ETH Institute of Environmental Engineering, highlights the significance of this theoretical model which complements large Earth System models, stating, “The model allows for a more straightforward estimation of microbial respiration rates based on soil moisture and soil temperature. Moreover, it enhances our understanding of how heterotrophic respiration in diverse climate regions contributes to global warming.”

Polar CO2 Emissions Likely to More than Double

A key finding of the research collaboration led by Peter Molnar and Alon Nissan is that the increase in microbial CO2 emissions varies across climate zones. In cold polar regions, the foremost contributor to the increase is the decline in soil moisture rather than a significant rise in temperature, unlike in hot and temperate zones. Alon Nissan highlights the sensitivity of cold zones, stating, “Even a slight change in water content can lead to a substantial alteration in the respiration rate in the polar regions.”

Advertisement


Based on their calculations, under the worst-​case climate scenario, microbial CO2 emissions in polar regions are projected to rise by ten percent per decade by 2100, twice the rate anticipated for the rest of the world. This disparity can be attributed to the optimal conditions for heterotrophic respiration, which occur when soils are in a semi-​saturated state, i.e. neither too dry nor too wet. These conditions prevail during soil thawing in polar regions.

On the other hand, soils in other climate zones, which are already relatively drier and prone to further desiccation, exhibit a comparatively smaller increase in microbial CO2 emissions. However, irrespective of the climate zone, the influence of temperature remains consistent: as soil temperature rises, so does the emission of microbial CO2.

How Much CO2 Emissions will Increase by Each Climate Zone

As of 2021, most CO2 emissions from soil microbes are primarily originating from the warm regions of the Earth. Specifically, 67 percent of these emissions come from the tropics, 23 percent from the subtropics, 10 percent from the temperate zones, and a mere 0.1 percent from the arctic or polar regions.

Significantly, the researchers anticipate substantial growth in microbial CO2 emissions across all these regions compared to the levels observed in 2021. By the year 2100, their projections indicate an increase of 119 percent in the polar regions, 38 percent in the tropics, 40 percent in the subtropics, and 48 percent in the temperate zones.

Will Soils be a CO2 Sink or a CO2 Source for the Atmosphere?

The carbon balance in soils, determining whether soils act as a carbon source or sink, hinges on the interplay between two crucial processes: photosynthesis, whereby plants assimilate CO2, and respiration, which releases CO2. Therefore, studying microbial CO2 emissions is essential for comprehending whether soils will store or release CO2 in the future.

“Due to climate change, the magnitude of these carbon fluxes—both the inflow through photosynthesis and the outflow through respiration—remains uncertain. However, this magnitude will impact the current role of soils as carbon sinks,” explains Alon Nissan.

In their ongoing study, the researchers have primarily focused on heterotrophic respiration. However, they have not yet investigated the CO2 emissions that plants release through autotrophic respiration. Further exploration of these factors will provide a more comprehensive understanding of the carbon dynamics within soil ecosystems.

Reference :

  1. Global warming accelerates soil heterotrophic respiration – (https://www.nature.com/articles/s41467-023-38981-w)

Source: Eurekalert



Source link