The development of Alzheimer’s disease is believed to be driven by the buildup of the toxic proteins amyloid-β and tau in the brain. The brain’s glymphatic system plays a crucial role in clearing these toxins and previous work has shown a possible relationship between sleep-dependent global brain activity and the glymphatic system by showing this activity is coupled by cerebrospinal fluid flow essential for the glymphatic system.
‘Global brain activity as observed on fMRI, tends to have weaker cerebrospinal fluid flow in brains of individuals with Alzheimer’s disease risk or related toxin buildup. This demonstrates the role of sleep-related brain activity in clearing toxic brain proteins and preventing Alzheimer’s disease.’
Using 118 subjects in the Alzheimer’s Disease Neuroimaging Initiative project, the researchers measured this global brain activity and cerebrospinal fluid flow as well as looking at behavioral data.
Individuals underwent resting-state fMRI sessions two years apart, and the team compared their findings with neurobiological and neuropsychological markers related to Alzheimer’s disease, such as levels of the toxic protein amyloid-β.
The strength of the connection between brain activity and cerebrospinal fluid flow was weaker in individuals at a higher risk or who had already developed Alzheimer’s disease. Additionally, this weaker connection was associated with higher levels of amyloid-β and disease-related behavioral measures two years later.
This suggests an important role for sleep-dependent global brain activity in the clearance of brain waste, and its connection to cerebrospinal fluid flow could be helpful as a future marker for clinical evaluation.
Dr. Liu adds, “The study linked the coupling between the resting-state global brain activity and cerebrospinal fluid flow to Alzheimer’s disease pathology. The finding highlights the potential role of low-frequency (
Source: Medindia